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ABSTRACT
This report describes the results and implementations of my re-
search project on using Channel State Information (CSI) obtained
from Commodity-Off-The-Shelf devices for vital sign monitoring
and movement tracking as well as activity detection. It describes
how it is possible to obtain CSI from different types of devices and
investigates their respective properties, advantages, and disadvan-
tages. Additionally, ground truth on respiration (chest accelera-
tion) and heart rate (ECG) is obtained for verification. Different
approaches for activity, respiratory, and heart rate detection with a
focus on heart rate variability using the provided CSI are discussed,
implemented, and evaluated. Afterward, possible approaches for
increasing the reliability of the detection systems are described.
Combining amplitude and phase information using the complex
conjugate product representation seems promising and processing
algorithms for sanitizing and preparing it for further analysis are
developed. Afterward, state and movement classification on the
obtained data is performed using machine learning techniques. The
framework for obtaining, collecting, recording, processing, and re-
playing CSI and other types of data in real-time that was developed
as part of this project is presented and released publicly.
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1 OBTAINING CSI
This research project is a continuation of my bachelor thesis[12].
Further insight into how to get the Atheros CSI Tool running and
obtain CSI from it can be found there.

As part of this project, I developed a framework for obtaining,
processing, recording, and replaying 802.11n[1] channel state in-
formation from multiple different devices in real-time as well as of-
fline. It supports obtaining CSI from devices containing an Atheros
WiFi chip, using the tool by Xie et al.[22], from Intel-based de-
vices, using the work of Halperin et al.[5] as well as from the ESP
microcontroller[7]. Data from multiple devices from different man-
ufactures can be collected and previewed on a central device at once.
Additionally, the collection of ground truth data for correlation is
possible. Currently, acceleration data from an Android-based phone
for respiratory detection as well as ECG data using an ESP micro-
controller for heart rate detection are available. The capabilities
of the framework as well as its components are described in more
detail in Section 15.

Figure 1: A WR2543ND router with the antenna array

1.1 Obtaining CSI from Atheros Devices
Obtaining CSI using Atheros-based chips is possible using the
Atheros CSI Tool by Xie et al.[22]. As described in my thesis, only
older devices are supported by the tool, as it relies on the transmit
beamforming capabilities of the 802.11n standard[1], which are not
mandatory and therefore might have been dropped in newer ver-
sions. In this work, the used Atheros-based devices were mostly the
TP-Link WR2543ND as well as the WDR4300 which both contain
three external antennas when using the 5 GHz band. In some cases,
the AR9462, a common WiFi chip present in quite a lot of COTS
laptops, was used.

A lot of research on CSI has focused on trying to correct the
phase shift introduced by the hardware when using commodity-
off-the-shelf (COTS) devices, which is necessary for some more
complicated applications like indoor localization. This has been
disregarded in this work, as it is not strictly necessary for vital
sign detection. Instead, this report mostly focuses on investigating
the difference in phase between individual antennas as well as the
raw amplitude data to monitor the target parameters. As the phase
offset is common to all receive chains of the device and therefore
the same across all antennas, it can be eliminated that way without
affecting the sensing capabilities of the system.

During my thesis, I was trying to apply the MUSIC algorithm[13]
to obtain the angle of arrival as well as the estimated time of flight
of the incoming signal. If the spacing of the individual antennas
doesn’t equal half a wave-length, 12.3022 𝑐𝑚 = 6.151𝑐𝑚 at 2437𝑀𝐻𝑧,
the MUSIC spectrum will contain artifacts[15]. I therefore built and
used an antenna array adhering exactly to that spacing. This can
be seen in Figure 1.

The orientation of the antenna array is key to the sensitivity of
the entire system. In case the RX and TX antennas are oriented
parallel to each other and have a direct line of sight (LOS), there
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Figure 2: The evolution of the unwrapped phase difference
between antenna 1 and 3 over time for three different sub-
carriers containg a visible respiratory pattern

won’t be as many indirect, non line of sight (NLOS) paths and
therefore sensing will be limited. Orientation of the transmitting
antennas parallel to the ground is preferable, as this creates more
NLOS paths and therefore improves the reliability of the system in
locations farther away.

2 RESPIRATORY DETECTION USING RSSI
In their work, Abdelnasser et al.[2] present the UbiBreathe system.
It uses the received signal strength indicator (RSSI) for monitoring
the respiratory rate of the target by fixing the transmitting device to
their chest. They claim to use standard WiFI APs, laptops, and cell
phones[2, p. 7] and seem to obtain an RSSI value with a resolution
of 0.25 which indicates the user’s breathing pattern. I was only able
to obtain RSSI with a resolution of 1.0, the Atheros hardware itself
only reports 8 bits of precision to the driver, the Android API also
reports using the lower precision. With this data, I wasn’t able to
detect any indication of respiratory action and therefore couldn’t
reproduce their results.

3 ACTIVITY DETECTION USING ATHEROS
DEVICES

This section is based on data obtained from the TP-Link WDR4300
using an AR9580 chip in the 5 GHz band.

Most vital sign tracking research so far has used amplitude in-
formation from Intel-based devices for monitoring activity and
respiratory rate. On Atheros-based devices, the amplitude seems
quite unstable and random and is unusable for tracking those char-
acteristics without further processing. The phase data obtained on
the other hand seems to be quite stable and suited for further inves-
tigation. It contains a random phase offset due to the measurement
process which can be removed by taking the difference in phase
between two antennas of the same WiFi chip.

Afterward, activity, as well as the breathing pattern of a user,
can be spotted in some subcarriers as can be seen in Figure 2. This
is still highly dependent on the user’s location within the room
and might therefore not be present when no LOS or NLOS path is
interrupted or influenced by the movement.

Additionally, the information is only present in some of the
subcarriers, therefore a method for selecting the best subcarrier for
the observation needs to be developed. To achieve this, the average
variance across subcarriers can be used on the phase difference
data as described by Zhu et al.[25].

Figure 3: The evolution of the phase difference variance in
a stationary scenario

Figure 4: The evolution of the phase difference variance in
a non stationary scenario

Figure 5: The evolution of the phase difference variance in
a "jumping" scenario

Afterward, this criteria doesn’t just allow for determining a sub-
carrier that responds sensitively tomovement for further processing
but also directly gives a metric for tracking the current activity in
the room. This can be seen in Figure 3 and Figure 4.

The detection is hampered sometimes though by some jumps in
the underlying phase data as can be seen in Figure 5. Removing them
turns out to be quite tricky but is crucial to process the data further.
A simple approach is to detect sudden changes in all subcarriers
that exceed a certain threshold and to simply correct for them.
This yields an issue though, as some sudden changes are caused by
movement which interrupts an NLOS path and should therefore
be captured. If the threshold is set low enough to remove all of the
phase shifts, most of the interesting information contained in the
data is lost as well. Sanitization and filtering of the input signal will
be discussed in detail in Section 4.
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4 RESPIRATORY DETECTION USING
ATHEROS DEVICES

For the development and evaluation of a respiratory detection sys-
tem, ground truth is required. This allows comparing the respiratory
pattern detected using CSI with the actual movement occurring. In
this project, an android smartphone that is strapped to the user’s
chest was used. An app was developed that monitors the device’s
internal accelerometer and transmits the collected information to
the central client device which records it alongside the CSI data
for further processing and analysis. As acceleration data itself isn’t
sensitive enough to reliably capture the breathing activity, the po-
sition/orientation data from the sensor is used instead. It combines
information from the acceleration due to gravity as well as the
orientation reported by the device’s magnetic sensor.

One possible approach to frequency detection is to employ peak-
to-peak detection by simply searching the signal for its peaks and
calculating their average distance. This allows obtaining the period-
icity of a repeating movement and therefore its frequency. In this
case, a simple discrete Fourier transform (DFT) is used though as
suggested by Abdelnasser et al.[2]. This allows detecting frequen-
cies in more noisy data where the actually peeks can’t be easily
distinguished. Applying it to the ground truth data obtained from
the android device directly yields a spectrum indicating the current
respiratory rate without any further processing. The respiratory
rate can also be seen in the phase difference of some of the mon-
itored subcarriers, although it is distorted by noise, "jumps" and
highly dependent on the user location within the room.

The best performance is achievedwhen the user is near the line of
sight (LOS) path and the antennas are parallel to each other. When
moving away from the LOS path, performance benefits significantly
from the antennas only having NLOS paths due to being oriented in
different directions. This can be achieved for example by tilting the
transmitter antennas until they’re nearly parallel to the ground. The
signal therefore has to take a longer, more complex path through
the room and is therefore more likely to interact with the user’s
chest.

To be able to apply the frequency analysis to the CSI phase
difference-based data, it needs to be filtered and processed fur-
ther first. Some jumps as shown in Figure 5 can be eliminated by
correctly bounding the signal to the interval [−𝜋, 𝜋] and then un-
wrapping it. This still leaves sudden changes in the underlying
data though, which can be caused when signal propagation paths
are interrupted significantly. To remove them, I propose using a
truncated mean on a sliding window. It represents a combination
of the mean and median. It first sorts the data points in the sliding
window according to their size. It then only selects a part of them
and discards all non-selected, outer values as specified by the 𝛼
parameter. This way, only the center values are retained and any
outliers are eliminated. Finally, the mean of the remaining values
is taken and returned. In this case a sliding window size of𝑤 = 10
at a frequency of 𝑓 = 100𝐻𝑧 with 𝛼 = 0.8 was chosen.

Applying a simple fast Fourier transform (FFT) to the resulting,
filtered and smoothed signal yields a spectrum that clearly contains
the actual respiratory frequency. It is desirable to obtain this fre-
quency in real-time during monitoring to provide quick feedback to
the user. The frequency estimation therefore needs to operate on a

Figure 6: The periodicity detection detecting the frequency
of the movement of a foot tapping along to music. The two
frequencies, one obtained using the Android-based ground
truth, the other obtained using CSI closely match.

Figure 7: The periodicity detection detecting the respiratory
rate by smoothing, FFT and interpolation.

small sliding window 𝑡 ∈ [5, 15]𝑠 . This reduces the resolution of the
spectrum. As the respiratory rate 𝑟 itself is usually located within
a very thin band of frequencies, 𝑟 ∈ [12, 20]𝑏𝑝𝑚 = [0.2, 0.33]𝐻𝑧
there will only be a few bins in the resulting spectrum that can be
distinguished. The precision of the obtained respiratory rate can
be significantly improved by interpolation instead of just using the
highest peak of the spectrum. This is achieved by fitting a quadratic
function to the peak and its neighboring two data points in the spec-
trum. The peak of the resulting parabola then yields the estimated
breathing frequency. In my experiments, this closely matched the
actual respiratory rate as observed using the ground truth as can be
seen in Figure 7. Figure 6 shows a test of the system when tapping
periodically along to a musical beat.

5 SUBCARRIER SELECTION
One important problem of all CSI-based sensing techniques that use
a subcarrier-based approach for detecting movement is selecting
the best subcarrier to use for the analysis. As subcarriers have
slightly different frequencies, they will have different propagation
paths and therefore react differently to movement. The goal of
subcarrier selection is to determine the subcarrier that reacts the
most sensitively to the desired movement and can thereby be used
for further processing.
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To address this problem, a lot of research simply selects the car-
rier with the highest variance, assuming it is therefore the most sen-
sitive to movement. This works fine for amplitude as strong changes
in amplitude usually represent the largest movement. This yields a
problem for phase-based sensing though, as large movement may
only cause a small change in case it’s not located near a propaga-
tion path, and small movement may cause a large change/"jump"
when it for example interrupts the LOS path. Therefore variance
is unsuited for subcarrier selection in the phase-based detection
systems used in this project. Instead, recurrence plots as proposed
by Liu et al.[9] were implemented and used. Due to lots of noise,
they still were not sufficient for detecting the best subcarrier. As the
sensing system proposed later in this report will use and combine
data from multiple subcarriers and antennas, this is not relevant
though and has not been investigated in detail. All results based
on single-carrier data are therefore just tracking a few selected
carriers.

6 OBTAINING CSI FROM INTEL DEVICES
As most of the research on leveraging CSI from COTS devices
so far has used data obtained from Intel-based devices, obtaining
data from the IWL5300 chip has been implemented in this research
project as well. It is based on the work by Halperin et al.[5] and uses
their CSI Tool for obtaining, previewing, storing, and processing
CSI in real-time as part of the framework presented in Section 15.
This enables capturing CSI from different types of devices at the
same time and comparing and combining them.

The only chip supported by the tool is the Intel WiFi Link 5300
(IWL5300), as the device’s firmware has to be modified. It is a
client/consumer WiFi chip with 2 or 3 antennas available as half-
size or full-size PCIe card. It was usually used in consumer laptops
as the main WiFi device and therefore requires an x86-based device
to operate.

As part of this project, using an Atheros-based OpenWRT router
running the injector tool as the transmitter was attempted. As
receiver, a laptop running Ubuntu 14.04 with the IWL5300 was
used. This requires cross-compiling the injector as well as its de-
pendency, the lorcon[21] library, for the MIPS architecture used
by the router. To be picked up by the receiver and calculate CSI
for, the transmitted frame needs to fulfill certain criteria. It needs
to be transmitted using a high throughput rate, e.g. HT20, and, as
monitor mode is being used, needs to be sent from and to the MAC
address 00:16:ea:12:34:56[4].

Certain modifications of the tool are required to achieve this on
an Atheros-based device. A deeper investigation into the frames
actually sent using Wireshark reveals that the library wrongly
packs the header of the frame, therefore causing the receiver to
mistake parts of the fragment sequence field for the source MAC
address and vice versa. This has been fixed by now (see this issue).
Obtaining CSI using the IWL5300 chip still wasn’t possible in this
work though.

Using a second IWL5300 chip, mounted in another x86 device as
transmitter worked without any issues. This suggests two IWL5300
are required for successfully capturing CSI which increases the
resource constraints in deployment scenarios, as two x86 devices

will be needed as well. In this case, a laptop and an APU Board
were used, both running Ubuntu 14.04.

According to Wang and Mao[18], using the 2.4 GHz band is not
recommended as random noise might be encountered, therefore
capturing CSI using the 5 GHz band on channel 36 was chosen.
Only a few other channels can be used, as the IWL5300 is designed
as a client chip and may therefore not initiate radiation on most
others. During testing, when using any channel other than 36, other
issues were encountered.

7 RESPIRATORY DETECTION USING INTEL
DEVICES

Respiratory detection using CSI data from Intel devices has been
studied in depth[9, 10, 16, 17, 19, 20, 23, 24]. Most previous research
has been focusing on amplitude data obtained from a single subcar-
rier. In my experiments, the phase data obtained from the IWL5300
was quite chaotic, contained a lot of noise and was not usable for
sensing.

On the other hand, initially, the amplitude information seems
to be quite stable, especially compared to Atheros-based chips,
where the inverse situation applies. It contains some noise though,
which usually manifests as a sinusoidal offset that is only present
in some frames. Some part of the time, the signal is stable and
reacts sensitively to movement in the room. During other instances,
sudden changes in amplitude can be observed that seem to represent
the same shape as before, just with a sinus wave added to all carriers.
This can be seen in the Figures 8, 9, and 10. All three frames shown
were captured consecutively at a frequency of 100𝐻𝑧.

Figure 8: Stable IWL5300 CSI amplitude across all subcarri-
ers

Figure 9: Unstable IWL5300 CSI with a sinusoidal offset

The offset effect seems to reduce when disconnecting an antenna.
It is likely related to some internal processing of the chip which

https://github.com/kismetwireless/lorcon/pull/13
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Figure 10: Unstable IWL5300 CSI with a different sinusoidal
offset

is trying to improve the link quality and thereby throughput. It
vanishes completely when all but one antenna are disconnected. It
can therefore and has beenmitigated in this project by runningmost
experiments on Intel devices with just a single antenna connected.
This does not cause any further issues as amplitude compared to
phase is stable and there is no offset due to sampling that would
have to be corrected, for example by taking the difference between
two connected antennas.

Detecting respiratory action and obtaining the breathing fre-
quency is trivial using amplitude from Intel-based devices. It is
present in almost all subcarriers and can be easily extracted, either
using peak-to-peak detection or the Fourier transform. This can be
seen in Figure 11.

Figure 11: IWL5300 CSI amplitude clearly shows the respi-
ratory pattern in all subcarriers with just one antenna con-
nected.

At first, the phase data from Intel devices seems quite random
and noisy. Further investigation shows, though, that there is a
constant offset of 8𝜋 linearly being applied over 30 subcarriers, as
can be seen in Figure 12. Removing this offset by determining each
subcarrier’s new phase 𝜙𝑠 as

𝜙𝑠 = 𝜙𝑠 −
8𝜋
𝑠

yields usable and stable phase information as can be seen in
Figure 13.

Figure 12: Raw phase information for ten frames obtained
using the IWL5300

Figure 13: Corrected phase information for ten frames ob-
tained using the IWL5300

8 HEART RATE DETECTION USING INTEL
DEVICES

Obtaining heart rate fromCSI is evenmore challenging than respira-
tory rate. This is due to the small movement caused by the heartbeat
and therefore its minor influence on the WiFi signal. Therefore,
before being able to extract the heart rate, more significant com-
ponents like the breathing rate need to be detected and removed
from the signal. This can be achieved using a Fourier transform.

Additionally to the pure frequency of the heart rate, obtain addi-
tional characteristics about the heartbeat is also desirable. One of
them is the so-called heart rate variability (HRV) which measures
the average offset and therefore the offset of the individual heart-
beats from a purely periodic signal. This can serve as an important
indicator of well-being as it allows correlations with the stress and
relaxation levels of the subject[11]. Due to this, obtaining HRV has
been one of the main foci of this project.

HRV detection relies on being able to extract the heart rate and
measure the distance and thereby the variability/non-periodicity
of its peaks. Applying a forward and inverse Fourier transform to
remove the respiratory effects would cause any non-periodic effect
to vanish. Therefore, a more sophisticated approach is required,
that preserves the locality of the individual frequency components.
As suggested by Wang et al.[19] and German-Sallo[3], one solution
to this problem is using the discrete wavelet transform (DWT), a
spatially localized extension of the Fourier transform. This allows
decomposing the signal step by step, each time removing the upper
half of the frequency spectrum from the signal.

This decomposition can be seen in figure 14. The left side rep-
resents the approximation coefficients. The contained frequencies
are halved during each step, in the end, only the respiratory rate re-
mains. The right side shows the detail coefficients, which represent
the information contained in the upper half of frequencies during
each removal. The detail coefficients representing the frequencies
heart rate is usually contained in can afterward be combined to
obtain a localized representation of target frequencies. Afterward,
further processing, e.g. using a normal DFT or peak-to-peak detec-
tion can be applied.

As the heart rate only causes a minor change in signal, a di-
rectional antenna was used to improve sensitivity as suggested
by Wang et al.[19]. Like with respiratory detection, ground truth



Fabian Putterer

Figure 14: The wavelet transform being applied. In the low-
est approximation coefficient, the regular respiratory pat-
tern can be seen.

Figure 15: Raw data from the ECG sensor

data was obtained for analysis and verification. This was achieved
by using a simple electrocardiogram (ECG) sensor in combination
with an ESP microcontroller. One of the main issues encountered
with this approach is caused by the microcontroller and therefore
sensor being connected to the recording device directly for data
transmission. This causes the influence of the power grid’s oper-
ating frequency to be represented within the measured heart rate
data. To eliminate this factor, the entire setup was designed using
an access point (AP) for data transmission between the recording
device (laptop) and the data sources. The Laptop uses its internal
battery, which removes any trace of the power grid’s operating
frequency from the signal. The obtained heart rate signal can be
seen in Figure 15.

There are multiple representations for HRV, one of them be-
ing the root mean square of successive differences (rMSSD). This
method measures the peak-to-peak distance between the individual
R-peaks of the QRS complexes. This yields a HRV value of 29.5𝑚𝑠

for the heartbeat signal shown in figure 15. The individual R-R
intervals can then also be visualized in a so-called Poincare Plot.

Figure 16: Raw CSI amplitude and ECG data

Figure 17: The reconstructed heart rate signal. The upsam-
pled signal is the result of simply upsampling all of the de-
tail coefficients to the same resolution and summing them.

Using the entire setup, ECG heart rate data, as well as Intel
and Atheros CSI data, was now captured for different scenarios.
Different distances (2m, 4m), antennas (omnidirectional, directional)
and locations (inpath, nearpath, behindpath) were evaluated. An
in-depth investigation of the obtained data was performed.

The raw CSI amplitude data and the ECG signal can be seen
in Figure 16. No direct correlation can be seen. Using the wavelet
transform, setting all out of band coefficients to 0 and reversing
the transform, we can now obtain all frequency information in the
desired band, in this case [0.78125, 3.125]𝐻𝑧 ≈ [47, 188]𝑏𝑝𝑚. The
reconstructed heart rate signal resulting from this can be seen in
Figure 17.

No clear indication of the actual heart rate could be seen here
either. Running a simple DFT on the reconstructed heart rate signal
yields no indication of the actual underlying heart rate as can be
clearly seen in Figure 18 compared with the ECG ground truth data.

During this project, extracting heart rate from WiFi CSI wasn’t
possible despite using directional antennas, multiple different sce-
narios, different wavelets, and different devices. The same analysis
was also performed on phase data, as can be seen in figure 19.

9 OBTAINING CSI FROM THE ESP
MICROCONTROLLER

Obtaining CSI from Intel and Atheros-based devices requires either
a router or an x86 device. They are quite large devices and in the case
of routers even require a stationary power supply. Using a mobile
device with its own power source which can be easily transported
and installed is therefore desirable. This can be achieved using an
ESP microcontroller.

One of the main advantages of this solution, additionally to it
being mobile, is that, unlike with the other tools, no workaround
is used for obtaining CSI but the functionality is built-in with the
device. Due to this, a station-to-access point connection isn’t strictly
required and the device also supports passive listening to frames
sent by other networks. On the other hand, the ESP only has one
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Figure 18: The frequency spectrumof the original signal and
reconstructed heart rate signal. They don’t show any indi-
cation of the frequency representing the current heart rate
clearly shownby the ECGground truth frequency spectrum.

Figure 19: Comparison of the reconstructed heart rate signal
based on amplitude and phase.

antenna, implying that phase data can not be used, as there is no
way to calculate the difference between multiple antennas.

Gathering CSI from ESPs is possible and integrated with the
framework developed during this project. The implementation is
based on the work by [7].

The obtained data allows detecting respiratory action but is only
available for one antenna and way less sensitive than that of the
other devices. This is likely due to the small antenna being used. A
comparison of data from all three devices can be seen in Figure 20.

10 IMPROVING RELIABILITY
As the ESP only has one antenna, it can easily disconnect when the
orientations of the receiving and transmitting antenna are not set
up correctly or there is an obstacle in the line of sight path. Due to
this and the ESPs weak signal sensitivity, further experiments have
focused on the larger devices using more capable antennas.

Figure 20: CSI data obtained from all three devices in paral-
lel

Most of the approaches discussed so far rely on data from a single
device for a single subcarrier. They usually only use one antenna or
one difference between two different antennas. They all focus on
either amplitude or phase. This allows detecting activity, movement,
and respiratory action, but the reliability highly depends on the
subject’s position within the room. The accuracy can be improved
a bit by not orienting the transmitting and receiving antennas
parallel to each other, therefore not having a line of sight between
the transceivers. In my experiments, the most successful orientation
meant leaving the receiver antennas oriented in a direction they
would be able to receive a signal from the transmitter in and tilting
the transmitting antennas 30◦ away from being parallel to the
ground. Compared to the situation before, when only movement
near the LOS path was detectable, this way, coverage of the room
can be improved significantly.

Additionally, instead of just looking at amplitude or phase data,
which each show some lack in sensing capability when moving
across the room, they can also be combined and used in unison to
overcome the limitations of the more simplistic systems presented
before. This will be investigated in the following sections.

11 LEVERAGING AMPLITUDE AND PHASE
Most research so far simply focused on extracting the amplitude
or phase data from the most variant subcarrier and using that
on its own to perform the sensing. Those systems, while usually
functioning in some setups, usually lack robustness and reliability,
especially against the subject moving or being located in different
positions in the room. Due to this, Zeng et al.[23] proposed com-
bining amplitude and phase information to improve sensitivity and
reliability.

They model the signal’s propagation paths through the room
using Fresnel zones as described byWang et al.[16]. This will cause a
complementary shift in amplitude and phase representing a simple,
distorted rotation in the signal space. This way, the signal will shift
between constructive and destructive interference once per Fresnel
zone boundary. Given a frequency of 5189𝑀𝐻𝑧, the signal has a
wavelength of 𝑙𝑠1 = 5.79𝑐𝑚, with a frequency of 2437𝑀𝐻𝑧, it is
𝑙𝑠2 = 12.3𝑐𝑚. The lengths of the NLOS paths of the boundaries are
therefore 2𝑛 × 𝑙𝑠

2 (constructive) and (2𝑛 + 1) × 𝑙𝑠
2 (destructive).

Using the LOS path length 𝑓 , and the NLOS paths 2𝑎, we can
then obtain the distance between the LOS path and the individual
Fresnel zone boundaries as:
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Figure 21: CSI amplitude while moving a big metal plate be-
tween Fresnel zones

𝑙𝑚 =

√︁
(2𝑎)2 − 𝑓 2

2
0.27 cm destructive
0.39 cm constructive
0.48 cm destructive
0.56 cm constructive
0.63 cm destructive
0.69 cm constructive
0.75 cm destructive

Using a large metal plate, this can also be confirmed by moving
it orthogonally to the LOS path along the given boundaries. The
resulting change in amplitude, switching between constructive
and destructive interference, can be seen in Figure 21. When the
plate is within a location of a high constructive or destructive
interference, its differential quotient approximates to 0. This implies,
that a change/movement in that location will only cause a small
deviation in the resulting amplitude measurement. But, according
to the model proposed by Zeng et al.[23], in these locations, the
effect on phase will be the largest possible, allowing us to sense
most movement when leveraging a combination of the two.

The postulated, rotating effect can not be observed in the raw CSI
data or two-dimensional CSI difference. Due to this, the subcarrier-
wise complex conjugate multiplication (CM) of CSI data of two
different antennas as suggested by Zeng et al.[24] was investigated.
This effectively results in using an amplitude ratio combined with a
phase difference between antennas, a two-dimensional plot which
can be seen in Figure 22.

Comparing the phase difference evolution and CSI CM plots
reveals, that depending on the scenario, a movement might be
visible in the phase, e.g. if the CM plot crosses over the origin,
but in other scenarios, as seen from the Fresnel zone model, the

Figure 22: An unprocessed plot of the complex conjugate
(CM) product between two different antennas

movement cannot be seen from phase alone but a clear change in
the CM shape plot can be spotted.

Using this insight, Zeng et al.[23][24] were able to improve their
sensing reliability quite substantially. They argue based on the CM,
but afterward, continue using amplitude and phase separately, but
complimentary.

Instead of processing them independently, what if we look at
and try to classify the CM data in the signal space directly? This
key insight will be explored in the following sections. First of all,
we will need to apply some filtering and processing to the signal as
it is quite chaotic and contains a lot of noise and "jumping". All data
for these experiments was obtained from Atheros-based devices.

The signal chaotically changes amplitude. This corresponds to
the observations in Section 7. The amplitude data was just discarded
therefore beforehand. Using this new representation, we now sim-
ply apply normalization to the CM data. This will remove any
absolute amplitude changes but will keep any changes in amplitude
relative to other subcarriers intact.

Additionally, Sanitization of the CM plot is performed using
smoothing and rotation filtering. The "jumps" we saw before in
raw phase data are now clearly visible. They manifest themselves
as rotations by 120◦ around the origin as well as instances, where
all subcarriers simply collapse to the same phase, as can be seen
in Figure 23. This might be due to some internal processing or a
switch in the MCS index. Given our new representation, we can
now easily eliminate the "jump" by filtering all samples with the
difference between all phase values over all subcarriers below a
threshold. Using interpolation of all other packets, we can fill in
the usually short gaps.

This still leaves sudden changes due to rotation. Those can also
be eliminated now by detecting determining the average phase of
the previous and current frame. We then rotate one of them and
test for overlap. If they are similar enough, but the overall rotation
is large, a permanent phase offset is added to all subsequent frames.
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Figure 23: A CM-plot with all subcarriers aligned along the
same phase value

Afterward, some additional smoothing using an average over a
sliding window is performed. This leaves us with sensitive, reliable,
and stable data that reacts to a lot of movement that could not
be observed using just amplitude or phase. Using this data for
classification will be investigated in the following sections.

12 CLASSIFICATION OF THE CM
REPRESENTATION

The CM representation is sensitive to a lot of movement and ac-
tivity, but there is no clear path to extracting and characterizing
information from it directly. It is obvious when observed by a hu-
man, but inferring information algorithmically is a bit more tricky.
Two different types of data will be investigated and classified, sta-
tionary data representing different locations and temporal data
representing different movements and gestures.

To enable characterizing movement as observed in CSI data,
either classically or using machine learning, we need to derive some
characteristic from the CM shape that responds to and represents
the measurement. The input data is two-dimensional, and in the
case of movement, there are multiple samples over time. The goal is
therefore to find some kind of dimensionality reduction procedure.

To eliminate noise, the system needs to be able to treat rotations
equally and only take into account changes in the subcarriers rela-
tive to each other. We are therefore looking at just characterizing
the shape and its change relative to itself instead of looking at the
absolute position in the signal space. One approach is therefore
dissecting the shape into lower-dimensional characteristics, that
still fully represent it. To achieve this, we can obtain the angles and
distances between neighboring subcarriers. This decomposes our
two-dimensional shape into two one-dimensional data sets that we
can now use for further classification, without losing any of the
relative components of the data. To create a continuous function,
the data is generated using absolute instead of relative angle values
as can be seen in Figure 24.

Figure 24: A CSI CM shape with the corresponding one-
dimensional angle and distance distributions

For further processing, it might be interesting to fix the starting
position of the resulting distributions, by subtracting the angle of
the first value from the entire function. This removes information
about the global rotation though. As the sanitization algorithm
for the CM shape stabilizes sudden phase rotations though, this is
not necessary anymore. Maintaining the global phase is therefore
desirable. While being useless for static classification due to global
offsets, it is still useful for the classification of movements that
gradually change the total phase.

Another issue with the angle data is that it represents an angle.
This means there are discontinuous locations within the function
where the angle wraps around. This can be removed by unwrapping,
but then the resulting function is theoretically unbounded, making
further processing like machine learning more complicated. Instead,
a classification method, that treats the given data as a function that
wraps around at 2𝜋 is needed.

Additionally, sometimes there is quite a sudden change in angle
between two subcarriers, but the shape stays about the same. This
can be seen in Figure 24 in the angle distribution, where there are
three discontinuous values. During movement, even if the shape
stays the same, those may shift one or two subcarriers to the left or
right. We therefore need a representation, that is invariant to small
shifts between subcarriers as well as considers the wrap around
from 0𝜋 to 2𝜋 to be equivalent.

One approach to solving this problem is employing a kernel-like
convolutional filter as is the case for convolutional neural networks
(CNNs). To accommodate the circular nature of the angle wrap
around, we need to modify the filter to wrap around the top and
bottom of the data as is done in a circular convolutional neural
network (CCNN) as proposed by Schubert et al.[14]. Afterward,
we can then actually just use a CNN for the classification of states
or feed the output of the CNN into some kind of recursive neural
network (RNN) like a Long short-term Memory (LSTM) network
to classify movement.

13 CLASSIFYING STATIONARY STATES
Using the sanitized CM representation of the CSI data we can
now perform classification. The approach for classifying stationary
states will build on a classical CNN architecture. As moving the
transmitter and receiver or restarting the respective devices causes
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Figure 25: The processing / learning architecture

an unknown offset to be introduced to the CSI data, stationary
classification may be limited to a few states where propagation
paths are distinctively interrupted but do not change too much
when moving a little bit. Nonetheless, this serves as a buildup to
approachingmovement classification, which requires deriving some
characteristic indicating movement. While the stationary CNN
approach might not be capable of reliably classifying all states, it
can be trained in unison with an RNN appended to its end, allowing
the RNN to detect a change in position, even though it would not
be capable of reproducibly detecting the same state with slightly
different positions.

As states, different locations in the roomwere chosen andmarked.
At those positions, CSI "images" were taken without any move-
ment occurring. The framework supports saving the current two-
dimensional CSI CM shape as well as the distance and angle distri-
butions along with the class of the current position, comparable to
taking an image with a camera.

To ensure that movement between training and test of themodels
is sufficient and the network can not just similarly classify "images"
taken right after each other, the training, validation, and test data
sets are captured independently. The entire processing architecture
can be seen in Figure 25. First, the two-dimensional CM shape is
decomposed into one-dimensional angle and distance distributions.
Those are converted to two-dimensional 1-hot encoded arrays so
that they can be processed by the CNN, thereby causing nearby val-
ues in the encoding to be treated similarly. Using a circular kernel
will then allow us to use a wrap-around compared to just encoding
a single value. As different transmitter antennas have different prop-
agation paths that react differently to movement, multiple transmit
antennas are used, always deriving the complex conjugate product
from the same two receiver antennas. This improves reliability and
sensitivity. The result are 2 (angle and distance) arrays for all 3 TX
antennas, all containing 55x72 values (55 subcarriers), therefore an
individual sample has a size of 55x72x6.

This data can now be used to train the model, which consists
of 3 convolutional layers with 16 to 32 filters, followed by pooling
and two dense layers. For regularization, batch normalization and
dropout are used.

After some tweaking of hyperparameters and using angle as
well as distance data from multiple antennas, the model achieves
an accuracy of 45 − 50% for classifying seven different locations.
This is a significant improvement over pure guessing which would
yield an accuracy of 1

7 ≈ 14.2% but far from reliable classification.
An instance of the training process can be seen in Figure 26.

At some point, the model fails at generalizing, even when in-
creasing regularization. This is likely due to the classification of
pure states not being possible reliably. The classification for a few

Figure 26: The training curves during model fitting for sta-
tionary samples

states always succeeds, but some other states or only slightly better
than guessing.

During experimentation, it can be observed, that for some in-
stances, for example when the subject is near a propagation path,
a small movement will yield a lot of change in the CSI data. This
usually means better detection, but might also cause the phase
to complete an entire rotation and therefore end up in the same
configuration as before. On the other hand, in some locations, a
large movement might not influence a propagation path, as there
is none nearby, thereby causing no change in the observed signal
and therefore not being sensitive at all.

Additionally supplying the two-dimensional, raw CM shape, was
also attempted but did not improve the model’s performance signifi-
cantly. This does not hinder further progress though, as state classi-
fication depends on multiple external factors and offsets, that aren’t
relevant to movement detection. Therefore, movement classifica-
tion will be attempted in Section 14 based on the state characteristic
extraction pipeline developed for state classification.

14 CLASSIFYING MOVEMENT
Based on the stationary classifier developed in Section 14, a move-
ment classifier can now be developed.

The framework developed during this project supports record-
ing temporal data of the CM shape as well as angle and distance
distributions, comparable to a video captured by a camera. Each
"video" spans a time interval of 𝑡 = 3𝑠 recorded at a frequency of
20Hz.

The previous, CNN-based pipeline is time distributed and exe-
cuted for each of the 60 frames individually. This gives the RNN
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Figure 27: The processing / learning architecture for move-
ment samples

Figure 28: The training process for all seven classes

some characteristic, describing the current state, to perform the clas-
sification on. The input samples therefore have a size of 55x72x7x60.
The entire architecture can be seen in Figure 27.

Seven different movement types have been selected for eval-
uation. Standing up, sitting down, remaining stationary, waving,
nodding, clapping, and walking. They were recorded in different lo-
cations and orientations, therefore not requiring separation by train,
validation, and testing datasets, as they can be randomly picked
from the entire dataset. There are 40 samples per class, yielding
2400 frames overall.

Training the model on all seven classes (guessing accuracy is
14.2%) yields an accuracy of ≈ 55% as can be seen in Figure 28.
Looking at the actual predictions on the test set, it can be seen that
the model is pretty confident on some classes, while constantly
mistaking the same other classes for each other. In Figure 29, this
can be seen for just the states standing up(0), sitting down(1), and

Figure 29: The predicition for standup(0), sitdown(1), and
stationary(2), the upper line is prediction, the lower one la-
bel

Figure 30: The training process for just three classes

being stationary(2) where the model constantly classifies standing
up correctly but keeps confusing sitting down and being stationary.

Reducing model expressiveness, the train and validation gap can
be closed further, but no better performance on the validation/test
data can be observed. Training just on three classes, standing up,
sitting down, and being stationary yields a test performance of 80%
(guessing: 33%) as seen in Figure 30.

The inaccuracy for some pairs of classes is likely due to simi-
larities in the movement, for example in the case of waving and
nodding, which both contain periodic movement at the same fre-
quency. Distinguishing them using CSI data might be possible but
will require further research.

Another approach could be to just look at a single, one-dimensional
characteristic over time, for example the variance of the phase, am-
plitude, or CM representation, and use a simple convolution to
compare it to some learned function for each class. As each move-
ment class usually has a characteristic intensity pattern, this could
allow determining the movement performed. Further research will
be needed to investigate whether it is possible to classify movement
this way.
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Figure 31: A screenshot of the client application

Figure 32: The network architecture used for gathering data

15 FRAMEWORK
As part of this project, a framework was developed, that allows
gathering, previewing, processing, recording and replaying CSI as
well as ECG and acceleration data in real-time as well as offline. For
each device type, a server is provided. A central client application
can then subscribe to each server, thereby getting notified about
new data generated by the device.

The framework and further documentation on how to build it
can be found at:

https://github.com/putterer/csi-client-app
An example of the client application running and replaying

pre-recorded CSI data from all device types as well as ECG and
acceleration data can be seen in Figure 31.

15.1 Network Architecture
A sketch of the network architecture used for recording data from
all possible sources can be seen in Figure 32. All Atheros and Intel-
based routers are connected to a central AP using ethernet cables,
which connects to the client application using a WiFi data network.
This is done as the client also records ECG data as ground truth and
therefore needs to be separated from any grid-based power supply
to avoid noise generated by the grid’s operating frequency.

15.2 Previews
Different types of previews are supported, including showing raw
as well as heavily processed and filtered data.

• Raw CSI: Signal space plot of the obtained CSI
• Raw Amplitude: Per subcarrier amplitude as well as evo-
lution of multiple subcarriers

• Raw Phase Diff: Per subcarrier phase difference between
two antennas as well as evolution of multiple subcarriers

• CM Plot: Plot of the complex conjugate product between
two antennas, raw as well as heavily processed, smoothed,
and filtered

• CM Distributions: Angle as well as distance distributions
of the CM shape

• Android Evolution: Evolution of acceleration data obtained
from an android application

• Serial Evolution: Evolution of raw serial data, e.g. ECG
data

Previews can be used by selecting the respective station and
using the Default and Show buttons. Additional settings will be
prompted using the Show button, else the defaults will be assumed.

15.3 Recording
All incoming data from all stations can be recorded in real-time
by pressing the Record button. The data will be compressed and
written to the selected folder.

15.4 Replaying
Recorded data can later be loaded and replayed, applying all preview
and processing algorithms as if the data were being generated in
real-time. This can be achieved using the Load replay button
and will restart the application, therefore closing all previews. The
recording can then be controlled using the provided interface.

15.5 Processing
Using the Movement and Respiratory checkboxes, the respective
components can be activated for the selected station. This allows
tweaking settings for and showing results for activity detection
and respiratory detection algorithms, including a preview of the
frequency analysis of the current signal using the Fourier transform.

15.6 Complex Conjugate Multiplication
Sample Recording

Using the CRecording checkbox, the CM recording dialog can be
opened. This allows recording samples of the current heavily pro-
cessed CM shape as well as angle and distance distributions. These
allow for applyingmachine learning techniques later on. The record-
ing can be switched between temporal and non-temporal mode,
thereby recording either single samples or batches of 60 samples
(at 20 Hz for 3 seconds). A sample is recorded by pressing a button
or keyboard key for the desired sample class, which is also stored
and can be used as an indicator for further processing.

https://github.com/putterer/csi-client-app
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